skip to main content


Search for: All records

Creators/Authors contains: "Michael, D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While there has been significant research on statistical techniques for comparing two information retrieval (IR) systems, many IR experiments test more than two systems. This can lead to inflated false discoveries due to the multiple-comparison problem (MCP). A few IR studies have investigated multiple comparison procedures; these studies mostly use TREC data and control the familywise error rate. In this study, we extend their investigation to include recommendation system evaluation data as well as multiple comparison procedures that controls for False Discovery Rate (FDR). 
    more » « less
    Free, publicly-accessible full text available March 25, 2025
  2. Information access systems, such as search engines and recommender systems, order and position results based on their estimated relevance. These results are then evaluated for a range of concerns, including provider-side fairness: whether exposure to users is fairly distributed among items and the people who created them. Several fairness-aware ranking and re-ranking techniques have been proposed to ensure fair exposure for providers, but this work focuses almost exclusively on linear layouts in which items are displayed in single ranked list. Many widely-used systems use other layouts, such as the grid views common in streaming platforms, image search, and other applications. Providing fair exposure to providers in such layouts is not well-studied. We seek to fill this gap by providing a grid-aware re-ranking algorithm to optimize layouts for provider-side fairness by adapting existing re-ranking techniques to grid-aware browsing models, and an analysis of the effect of grid-specific factors such as device size on the resulting fairness optimization. Our work provides a starting point and identifies open gaps in ensuring provider-side fairness in grid-based layouts. 
    more » « less
    Free, publicly-accessible full text available March 25, 2025
  3. Information Retrieval (IR) systems have a wide range of impacts on *consumers*. We offer maps to help identify goals IR systems could---or should---strive for, and guide the process of *scoping how to gauge a wide range of consumer-side impacts and the possible interventions needed to address these effects. Grounded in prior work on scoping algorithmic impact efforts, our goal is to promote and facilitate research that (1) is grounded in impacts on information consumers, contextualizing these impacts in the broader landscape of positive and negative consumer experience; (2) takes a broad view of the possible means of changing or improving that impact, including non-technical interventions; and (3) uses operationalizations and strategies that are well-matched to the technical, social, ethical, legal, and other dimensions of the specific problem in question. 
    more » « less
    Free, publicly-accessible full text available March 25, 2025
  4. Free, publicly-accessible full text available March 1, 2025
  5. Abstract

    We present motivation and practical steps necessary to find parameter estimates of joint models of behavior and neural electrophysiological data. This tutorial is written for researchers wishing to build joint models of human behavior and scalp and intracranial electroencephalographic (EEG) or magnetoencephalographic (MEG) data, and more specifically those researchers who seek to understand human cognition. Although these techniques could easily be applied to animal models, the focus of this tutorial is on human participants. Joint modeling of M/EEG and behavior requires some knowledge of existing computational and cognitive theories, M/EEG artifact correction, M/EEG analysis techniques, cognitive modeling, and programming for statistical modeling implementation. This paper seeks to give an introduction to these techniques as they apply to estimating parameters from neurocognitive models of M/EEG and human behavior, and to evaluate model results and compare models. Due to our research and knowledge on the subject matter, our examples in this paper will focus on testing specific hypotheses in human decision-making theory. However, most of the motivation and discussion of this paper applies across many modeling procedures and applications. We provide Python (and linked R) code examples in the tutorial and appendix. Readers are encouraged to try the exercises at the end of the document.

     
    more » « less
  6. The ionization energies (IEs) of RuC, RhC, OsC, IrC, and PtC are assigned by the measurement of their two-photon ionization thresholds. Although late transition metal–carbon bonds are of major importance in organometallic chemistry and catalysis, accurate and precise fundamental thermochemical data on these chemical bonds are mainly lacking in the literature. Based on their two-photon ionization thresholds, in this work, we assign IE(RuC) = 7.439(40) eV, IE(RhC) = 7.458(32) eV, IE(OsC) = 8.647(25) eV, IE(IrC) = 8.933(74) eV, and IE(PtC) = 9.397(32) eV. These experimentally derived IEs are further confirmed through quantum chemical calculations using coupled-cluster single double perturbative triple methods that are extrapolated to the complete basis set limit using a three-parameter mixed Gaussian/exponential extrapolation scheme and corrected for spin–orbit effects using a semiempirical method. The electronic structure and chemical bonding of these MC species are discussed in the context of these ionization energy measurements. The IEs of RuC, RhC, OsC, and IrC closely mirror the IEs of the corresponding transition metal atoms, suggesting that for these species, the (n + 1)s electrons of the transition metals are not significantly involved in chemical bonding.

     
    more » « less
    Free, publicly-accessible full text available February 28, 2025
  7. Abstract

    Domestication can be considered a specialized mutualism in which a domesticator exerts control over the reproduction or propagation (fitness) of a domesticated species to gain resources or services. The evolution of crops by human-associated selection provides a powerful set of models to study recent evolutionary adaptations and their genetic bases. Moreover, the domestication and dispersal of crops such as rice, maize, and wheat during the Holocene transformed human social and political organization by serving as the key mechanism by which human societies fed themselves. Here we review major themes and identify emerging questions in three fundamental areas of crop domestication research: domestication phenotypes and syndromes, genetic architecture underlying crop evolution, and the ecology of domestication. Current insights on the domestication syndrome in crops largely come from research on cereal crops such as rice and maize, and recent work indicates distinct domestication phenotypes can arise from different domestication histories. While early studies on the genetics of domestication often identified single large-effect loci underlying major domestication traits, emerging evidence supports polygenic bases for many canonical traits such as shattering and plant architecture. Adaptation in human-constructed environments also influenced ecological traits in domesticates such as resource acquisition rates and interactions with other organisms such as root mycorrhizal fungi and pollinators. Understanding the ecological context of domestication will be key to developing resource-efficient crops and implementing more sustainable land management and cultivation practices.

     
    more » « less
  8. Free, publicly-accessible full text available February 28, 2025
  9. Freitag, Nancy E. (Ed.)
    The National Summer Undergraduate Research Program (NSURP) is a mentored summer research program in biosciences for undergraduate students from underrepresented backgrounds in science, technology, engineering, and mathematics (STEM). Conducted virtually over 8 weeks every summer starting in 2020, NSURP provides accessible and flexible research experiences to meet the needs of geographically diverse and schedule-constrained students. Drawing from mentee reporting and surveys conducted within the NSURP framework involving over 350 underrepresented minority undergraduate students over three cohorts (2020–2022), matched with mentors, this paper highlights the potential benefits of students participating in virtual mentored research experiences. In addition to increased access to quality research experiences for students who face travel or academic setting constraints, we found that virtual mentoring fosters cross-cultural collaborations, generates novel research questions, and expands professional networks. Moreover, this study emphasizes the role of virtual mentorship opportunities in fostering inclusivity and support for individuals from underrepresented groups in STEM fields. By overcoming barriers to full participation in the scientific community, virtual mentorship programs can create a more equitable and inclusive environment for aspiring researchers. This research contributes to the growing body of literature on the effectiveness and the potential of virtual research programs and mentorship opportunities in broadening participation and breaking down barriers in STEM education and careers.

    IMPORTANCE

    Summer Research Experiences for Undergraduates (REUs) are established to provide platforms for interest in scientific research and as tools for eventual matriculation to scientific graduate programs. Unfortunately, the COVID-19 pandemic forced the cancellation of in-person programs for 2020 and 2021, creating the need for alternative programming. The National Summer Undergraduate Research Project (NSURP) was created to provide a virtual option to REUs in microbiology to compensate for the pandemic-initiated loss of research opportunities. Although in-person REUs have since been restored, NSURP currently remains an option for those unable to travel to in-person programs in the first place due to familial, community, and/or monetary obligations. This study examines the effects of the program's first 3 years, documenting the students’ experiences, and suggests future directions and areas of study related to the impact of virtual research experiences on expanding and diversifying science, technology, engineering, and mathematics.

     
    more » « less
    Free, publicly-accessible full text available January 16, 2025
  10. Red blood cell (RBC) disorders such as sickle cell disease affect billions worldwide. While much attention focuses on altered properties of aberrant RBCs and corresponding hemodynamic changes, RBC disorders are also associated with vascular dysfunction, whose origin remains unclear and which provoke severe consequences including stroke. Little research has explored whether biophysical alterations of RBCs affect vascular function. We use a detailed computational model of blood that enables characterization of cell distributions and vascular stresses in blood disorders and compare simulation results with experimental observations. Aberrant RBCs, with their smaller size and higher stiffness, concentrate near vessel walls (marginate) because of contrasts in physical properties relative to normal cells. In a curved channel exemplifying the geometric complexity of the microcirculation, these cells distribute heterogeneously, indicating the importance of geometry. Marginated cells generate large transient stress fluctuations on vessel walls, indicating a mechanism for the observed vascular inflammation.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024